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Abstract – In this paper, we present a comparison of the experimental results of the behaviour of wings with 
elliptical, rectangular or trapezoidal plan forms with NACA 0012 airfoils. The prediction for the lift and the 
induced drag by the Prandtl lifting line theory is also compared with the experimental results. It appears 
that, at different Reynolds numbers, the aerodynamic characteristic differences between the three wings are 
very small. 

Résumé –  Dans cet article, on présente une comparaison des résultats expérimentaux  des ailes de formes 
elliptiques, rectangulaires ou trapézoïdales de profils NACA 0012. La prédiction de la portance et la traînée 
induite par la théorie de la ligne portante de Prandtl est aussi comparée aux résultats expérimentaux. Il 
paraît qu’à de différents nombres de Reynolds, la différence des caractéristiques aérodynamiques entre les 
trois ailes est très réduite.  
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1. INTRODUCTION 

The aerodynamic of airfoils has been studied by Kutta (1902) on thin airfoils and Joukowski (1905) on 
airfoils with thickness. These airfoils were obtained from a circular cylinder by conformal mapping. The theory 
of Joukowski for 2D flow, so for an infinite wing,  marks the beginning of the modern aerodynamic. At the 
same time, appeared the works of pioneers of the  aviation, the Wright brothers,  who based their study on the 
analysis of the stability of the plane made by Lanchester in 1894 [1,4]. They had a good understanding of wing 
and airfoil behaviour well beyond that of other experimenters at that time. Most of the success of the Wright 
brothers could be attributed to their  own research, which used their wind tunnel and numerous experiments with 
controlled kites and gliders. In the same way, the experimental studies take a big progress in the wind tunnel 
thanks to tests on models made in  England by Wenham and Philips. A new step was crossed by Prandtl 
[3,12,19] who created the theory of finite wing (1917-1918) that was presented with a laborious mathematical 
formula that honours nowadays the domain of aerodynamics. This theory gave a new and a big progress to 
aerodynamics. During twenty years, the theories of Joukowski and Prandtl have been the starting points of many 
theoretical and experimental works, and permit us in this context to describe the aerodynamic properties of the 
elliptical wing [5,6] and of arbitrary plan form. This elliptical wing leads to an also elliptical distribution for the 
local circulation and to the famous minimum induce drag [13-19]. Generally speaking, one can represent any 
arbitrary distribution for local circulation by means of the Fourier series development. When the distribution of 
local circulation is not elliptical, the induce drag is not minimal but it appears that the difference is relatively 
small. 
A geometric definition of wing airfoils is given by the figure 1[19,22,24] 
 
 Upper side 
    Leading edge A e B trailing edge  

                                                                               Lower side 
      c : Chord of airfoil 

 
 

                                Fig. 1: geometry of the airfoil 
 

2. AERODYNAMIC CHARACTERISTICS OF WINGS WITH ARBITRARY PLAN FORM 
The starting point of the Prandtl lifting line theory if the Joukowski theorem in 2D flow giving the lift of a 

portion l  of the infinite wing , with the definition of the lift coefficient written in 2D for convenience  CL2D
, 

the surface of reference being the product  S = l c :  

  
L2D =  ρ V∞ l Γ2D   =  

1
2

 ρ V∞
2 l c ( ) CL 2D

  so that  Γ2D  =  
1
2

  V∞  c  CL2D
                                                      (1) 
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If we use the classical result obtained in inviscid incompressible flow, the circulation is expressed by means of 
the angle of attack, the zero lift being determined by the Kutta-Koukowski condition at the trailing edge.  This 
leads to the relation: 

Γ2D =  4π R  c V∞ sin α -  α0( )                                                                                                  (2)  

where the ratio  R  =  
R
c

 is obtained either by numerical method or, if available, by the conformal mapping of 

the circular cylinder of radius  R  into our airfoil of chord  c. Then  (1) leads to the classical 2D result : 
 CL2D

 =  8π R   sin α -  α 0( ) =  m0 sin α -  α0( )   
where  m0 is the lift gradient at zero lift. It can be reminded that if the airfoil is considered as a thin airfoil then  
m0  is equal to 2π.  With this new notation, relation  (2) can be written : 

Γ2D =  
m0

2
 c V∞  sin α -  α0( )                                                                                            (3) 

Following Prandtl's ideas, relation (3)  is extended to 3D flows on a large aspect ratio wing by formally 
changing Γ y( ) =  

m0 y( )
2

 c y( ) Ve y( ) sin αe y( ) -  α0 y( )( ) 

where  αe y( )   is an effective incidence taking into account the induced velocities of the wing vortex sheet and 
the eventual wing twist . Ve y( )  is the modulus of the effective velocity acting on the airfoil.   The preceding 
relation is generally simplified in the following way : 

• the order of approximation of the lifting line theory the effective velocity  Ve(y)  is kept equal to  V8  
due to the fact that, for large aspect ratio wings, the vortex sheet induced velocities are small compared 
to  V8. 

• the angles of incidence are supposed to be small so that the sine is approached by the angles themselves 
expressed in radian. 

Then we get : 

 ∀y ∈ -b/2,+b/2[ ] Γ y( ) =  
m0 y( )

2
 c y( ) V∞  αe y( ) -  α 0 y( )[ ]                              (4) 

Where   αe y( ) =  α +  ∆αv y( ) -  VP
Γ' y0( )
4π V∞-b/2

+b/2

∫
dy0

y -  y0( )
                                                                          (5) 

Where  VP means the Cauchy's pricipal value of the integral.  Relation  (4) with the help of relation  (5)  is the 
famous Prandtl's integro - differential equation  (PIDE) which gives the unknown law of circulation when all the 
other parameters are given : 

• the incidence  α  of the wing, i.e. the angle of incidence of the airfoil at the root of the wing 
• the law of chord  c(y) 
• the law of twist  αv(y) 
• the lift gradient  m0(y) of the airfoils which composed the wing 
• the zero lift angle of attack  α0(y) which may vary either due to the use of different airfoils, or for 

airfoils with or without flaps. 
Among the methods which exist for solving the PIDE (4), one can use a Fourier expansion of the law of 
circulation . If we introduce the angle  θ  such as  y =  

b
2

 cosθ   we go from one tip of the wing to the other 

when  θ  varies from  0  to  p, the root of the wing corresponding to  θ =  
π
2

.  

Due to the fact that the law of circulation is necessarily zero at each tip, the Fourier expansion only consists in 
sine terms such as : 

Γ θ( ) =  2b V∞  A n sin(nθ)
n=1

∞

∑                                                                                             (6) 

With this expansion the induced velocities can be expressed by means of the  An  coefficients in the following 
way : 

 VP
Γ ' y0( )
4π V∞-b/2

+b/2

∫
dy0

y -  y0( )
 =  n An  

sin nθ( )
sinθn =1

∞

∑  

So that the PIDE  (4)  takes the following form, for any values of  θ ∈ 0, π[ ] : 

 An sin(nθ)
n=1

∞

∑  =  
m0 θ( )

4b
 c θ( )  α +  ∆αv θ( ) -   n A n 

sin nθ( )
sinθn=1

∞

∑  -  α0 θ( ) 
  

 
  

                     (7) 
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With  αe θ( ) =  α +  ∆α v θ( ) -   n An  
sin nθ( )

sinθn =1

∞

∑                                                                             (8) 

In the above form it clearly appears that the coefficients  An are solution of an infinite linear system which 
can be split into three subsystems.  If we write : 

 G(θ) =  
m0 θ( )

4b
 c θ( )    and    Fn θ( ) =  sin nθ( ) 1 +  n 

G(θ)
sinθ

 
 

 
 

 

The three subsystems are, for any values of  θ ∈ 0, π[ ]: 

• • the effect of unit angle of attack      an  Fn θ( )
n=1

∞

∑   =  G(θ)                                                                 

(9) 

• • the effect of the twist     Bn Fn θ( )
n=1

∞

∑   =  G(θ) ∆αv θ( )                                                        (10) 

• • the effect of the zero lift angles of attack  Cn Fn θ( )
n=1

∞

∑   =  -  G(θ) α0 θ( )                                         

(11) 
And the global solution                                  A n = α an + Bn + Cn                                                              (12) 

It is important to underline that each subsystem only depends upon geometrical data or 2D aerodynamics 
characteristics, so that they can be solved once for all for a given wing. The angle of attack only appears on the 
global solution  (12). It can be shown that lift and induce drag can be express by means of the coefficients An by 
: 

CL =  π A A1   and  CDi
 =  π A n An

2

n =1

∞

∑                                                      (13) 

In the following part, we assume that the wing is composed of the same airfoil in smooth conditions so that 
m0(y) = m0 = constant and in the same way α0(y) = α0 = constant, and that the wing is untwisted so that αv(y) = 
0.  Then we get from  (10)  that  Bn = 0  ∀n   and  Cn = - α0 an  ∀n , so that from  (12) : 

An =  α -  α0( ) an                                                                                                          (14) 

where  an  verifies the PIDE ,∀θ ∈ 0,  π[ ]  :   

 an  Fn θ( )
n=1

∞

∑   =  G(θ)                                                                                                              (15) 

with                       G(θ) =  
m0

4b
 c θ( )                                                                                                                  

(16) 

and                  Fn θ( ) =  sin nθ( ) 1 +  n 
G(θ)
sinθ

 
 

 
 

                                                                                         (17) 

In that case, lift and drag coefficients takes the simplified form : 
CL =  π A a1 α -  α 0( )                                                                                                           (18) 

and                        CDi
 =   

CL

π A

2

 n 
an

a1

 

 
  

 
 

2

n =1

∞

∑   

This last relation is often written  

CDi
 =   

CL

π A

2

1 +  σ( )                                                                                                            (19) 

 with                    σ =  n 
an

a1

 

 
  

 
 

2

n =2

∞

∑                                                                                                                     (20) 

 
3. THE AERODYNAMIC CHARACTERISTICS OF THE ELLIPTIC WINGS 

An important case, if that of an elliptical distribution of local circulation for which An = 0  ∀n = 2. For an 
untwisted wing, composed of the same airfoil, this case is obtained for an elliptical plan form.  Effectively the 
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above relations lead to   an = 0  ∀n = 2 and the PIDE reduces to  a1  sinθ  =   1-  a1( ) m0

4b
 c θ( )   after replacing 

G(θ) and  F1(θ), which is of the form :       c θ( ) =  c0 sinθ =  c0  1 -  
y

b/2
 
 

 
 

2
. 

The only coefficient  a1  can be determined using the aspect ratio  A =  
b2

S
 and the surface of reference of the 

wing  S =  c y( )
-b/2

+b/2

∫  dy =  
b
2

c θ( )
0

π

∫  sinθ dθ .  

It comes :  a1 =  

m0

π A
1 +  m0

π A

  so that  CL =  
m0 α -  α0( )

1 +  m0

π A

 =  m α -  α0( )  

And as  σ =  0 , the induce drag is minimum with  CDi
 =   

CL

π A

2

 

The distribution of circulation is  Γ θ( ) =  
2b V∞  CL

π A
 sinθ =  Γs  1 -  

y
b / 2

 
 

 
 

2

  and the effective angle of attack 

are constant      αe θ( ) =  α  -   A1  or : αe θ( ) -  α 0 =  
α - α 0

1 +  m0

π A
 
.  

 
4. AERODYNAMIC CHARACTERISTICS OF UNTWISTED RECTANGULAR AND  

TRAPEZOIDAL WINGS 
For a rectangular and trapezoidal wings, the chord   c(y) = c0  is a constant and the aspect ratio is simply  

A =  
b
c0

.  In that case, the PIDE   (15)  becomes : 

  an   sin nθ( ) 1 +  
 n

sinθ
 

m0

4 A
  

 
 
 n=1

∞

∑   =    
m0

4 A
   ∀θ ∈ 0,  π[ ] 

If for convenience we assume that the wing is composed of a thin airfoil, then the above relation turns to : 

 an   sin nθ( ) 1 +  
 n

sinθ
 

π
2 A

  
 

 
 n=1

∞

∑   =    
π

2 A
     ∀θ ∈ 0,  π[ ]                                                (21) 

For a symmetrical wing, the flow is also symmetrical so that for any values of θ one must obtain 

1 +  -1( )n[ ]
n=1

∞

∑  a n sin nθ( ) =  0  . It turns out that all the even coefficients   a2n  are zero so that solving relation  

(21)  for the values of  θ  taken in the complete interval [0, π]  is useless. Consequently,  (21)  is rewritten, on 
one hand only for the odd coefficients, and secondly only for the values of  θ  taken within the interval  [0, π/2] :  

 a2n -1  sin (2n − 1)θ[ ] 1 +  
 2n − 1
sinθ

 
π

2 A
  

 
 
 n=1

∞

∑   =    
π

2 A
   ∀θ ∈ 0, π/2[ ]                                  (22) 

On a numerical point of view, the infinite linear system  (22)  is truncated to a finite one, including only  N  
coefficients  a2n-1  unknown. Consequently the equation  (22)  is written for  N  discrete values  θj .  
Writing  X n =  a2n -1 , we have to solve  

  
  A j n Xn

n=1

n =N

∑   =  Bj
  ∀j = 1, N . 

The matrix to inverse is  
  
A j n =  sin (2n − 1)θ j[ ] 1 +  

 2n −1
sinθ j

 
π

2 A
 

 

  
 

  
 and the second member  

  
Bj =  

π
2 A

.  

• If only four unknown coefficients are kept with the values  θ1 =  
π
8

, θ2 =  
π
6

, θ3 =  
π
4

  and  θ4 =  
π
2

, we 

obtain the following results, with  A = 8 : a1 = 0.24301, a3 = 0.02823, a5 = 0.00508  and a7 =  0.00218, 
which leads to the aerodynamic coefficients, drawn from  (18), (19) and (20) : CL =  4.5806 α -  α0( )   

σ =  0.04322 and    CDi
 =   1.16126 α -  α0( )2   

It appears that with such few points, the results are too sensitive to the choice of the angles θj. To cure this 
problem it is necessary to keep more unknown. 
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• With  N = 40, that is to say with  a1  to  a79,  and θ j  =  
j -  1( )

(N -  1)
 

π
2

, the following global results are the 

following :  
CL =  4.53042 α -  α0( )   σ =  0.04829 , and    CDi

 =   1.14145 α -  α0( )2
, or CDi

 =   0.055613 CL
2

 
 
It is to be noticed that for the value  θ1 = 0, which corresponds to the first line of the linear system,  the PIDE is 
taken to the limit giving   A 1 n  =   2n − 1( )2   and   B1 = 1.  There is no changes in these results with five digits, 
if the number  N  of unknown is increased up to 60, or 80 or 100.  In parallel to these results dealing with the 
rectangular wing, one can compute the results for the elliptical wing with the same aspect ratio  A = 8, and  m0 = 
2π. It comes :  
CL[ ]ell.  =  4.71239 α -  α0( )   σ =  0  and   CD i[ ]ell.

 =   1.17810 α -  α0( )2  or CD i[ ]ell.
 =   0.053052 CL[ ]ell .

2  

The lift curve slope  ∂CL

∂α
  is  3.86% less than the elliptical one. On an other hand, compared with the same lift 

coefficient, the induce drag coefficient of the rectangular wing is  4.83% greater than the elliptical one. 
 

5. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 
The three wings tested are equipped with a NACA0012 airfoil, which is a symmetrical airfoil of 12% 

thickness.  The three wings, mounted at the wall of the wind tunnel, with a special device to get free of the 
boundary layer on this wall, have the same half span  b/2 = 0.32 m, the same aspect ratio  A  = 8, and 
consequently the same surface S. For both wings, the mean chord is   l = 0.1067 m  and the Reynolds 
number base on this length and the wind tunnel velocity  V8 = 26.5 m/s, is roughly  Re  ≈  1.9 105 . In these 
conditions, at positive angles of attack, a laminar separation occurs closed to the leading edge which provokes a 
transition followed by a rapid turbulent reattachment, so, despite the relatively low Reynolds number, the flow is 
turbulent on the entire wing. 
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Fig. 2: Lift of rectangular wing 
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Fig. 3: lift of elliptic wing 

a) Lift curves (Figures 2,3,7,8, 9) 
The variation of the lift coefficient with the angle of attack  α  is linear up to approximately  6°. Then the 

progress of separation induces a decrease in the lift slope until the stall.  On figure 2, the two experimental lift 
curves are superposed showing that the differences between the two wings are only visible near and after stall. 
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Fig. 4: Lift of trapezoidal wing 
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Fig. 5:  Induced drag of elliptic wing 
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b) Drag curves (Figures 5,6,7) 
The experimental and numerical curves are not immediately comparable due to viscous effects. 
 If we assume that the friction drag is not very sensitive to the angle of attack, then the experimental drag at zero 
lift , for which little separation is expected, gives a good idea of this part of the total drag. With this value added 
to the induce drag the remaining differences between  CD =  CD 0

 +  1 +  σ( ) 
CL

2

π A
  and the experimental results 

come from flow separation and is visible only at angles of attack greater than 6°. 
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 Fig. 6: Induced drag of rectangular wing 
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 Fig. 7: Induced drag of trapezoidal wing 
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Fig. 8: Comparison between rectangular and elliptic 

wings given by experimental results. 
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Fig. 9: Comparison between rectangular, elliptic and 
trapezoidal wings given by experimental 
results 

 
6. CONCLUSIONS 

In this paper, we have compared the aerodynamic characteristics of rectangular, trapezoidal and elliptic 
wings either on the experimental point of view or on the numerical one using the Prandtl lifting line theory. 
It appears that, to the Reynolds tested, the experimental behaviour of the two wings is very closed, with 
differences essentially near and after stall. The theoretical results predict reasonably well the lift slope as long as 
separations are of small importance, i.e. for small incidences. In the same spirit, once the friction drag is added 
to the theoretical induce drag, the resulting drag is also satisfactory for angles of attack with  few separation.  
It is possible to improve the lifting line theory results, but it is then necessary to take into account the 
experimental curve  CL 2D

α( )  including stall. This could be done starting from  (1)  and the lifting line 

principles giving the following relation :         Γ y( )  =  
1
2

  V∞  c y( )  CL2D
α e y( )[ ] 

Due to the generally non linear behaviour of the function CL 2D
α( ) in experimental conditions, the PIDE is no 

longer linear and must be solve by an iterative process. 
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